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In order to investigate the validity of the Brueckner and the simple sum of the ladder diagrams approxi
mations to the energy of an infinite system of fermions, we have calculated as a function of density all the 
terms in the perturbation expansion through the fourth order in the strength of the potential. We have 
done this for a repulsive, square-well, two-body potential spin-J fermions. We are able to construct rigorous 
upper and lower bounds from the coefficients for the value of the ladder approximation and find that the 
standard solution procedures give reasonably accurate results (within a few percent). We find that the 
error in the solution as obtained in practice to the equations of the Brueckner approximation is large com
pared to the size of its departure from the ladder approximation. We further find for low-to-moderate 
densities and for low-to-moderate potential strengths that the Brueckner approximation both as a sum of a 
certain class of diagrams and as computed in practice lies above the ladder approximation while the com
plete perturbation theory lies below it. This result arises from the neglect of the ring diagrams by the 
Brueckner approximation. 

I. INTRODUCTION 

THE Brueckner theory contains two classes of 
approximations. The first class of approximations 

are numerical in character, introduced to make calcula
tions feasible. The Pauli exclusion principle is not 
treated exactly; neither is the dependence of the K 
matrices on the total momentum treated exactly; 
approximations are introduced to make a partial-wave 
expansion of the iT-matrix equations possible. Off-
energy shell propagation is not treated exactly either; 
an approximation is introduced to simplify this formid
able aspect of the Brueckner theory. The other class of 
approximations is the neglect of diagrams in every 
order (beyond the second) of many-body perturbation 
theory. 

Actual calculations of Brueckner theory reveal 
unexpected results: For example, Brueckner and 
Gammel found that the self-consistency problem has no 
solution for liquid He3 for densities larger than a certain 
critical density.1 Is this result a consequence of the 
theory or the numerical approximations? Our results 
suggest that it is a consequence of the treatment of 
off-energy shell propagation. 

Our purpose is to investigate these approximations 
for a simple, realistic problem, namely, a system of 
identical spin-J particles (liquid He3, for example) 
interacting via a square-well potential, an extreme 
limit of which is a repulsive hard core. 

A method which has influenced our thinking is the 
Pade approximant method.2 This method offers a way 
of summing perturbation series which is different from 
Brueckner's i^-matrix method. The Pade method does 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

1 K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1040 
(1958), Sec. D. 

2 G. A. Baker, Jr. and J. L. Gammel, J. Math. Anal. Appl. 2, 
21 (1961). G. A. Baker, Jr., J. L. Gammel, and J. G. Wills, J. 
Math. Anal. Appl. 2, 405 (1961). H. S. Wall, Continued Fractions 
(D. Van Nostrand, Inc., Princeton, New Jersey), Chap. XX. 

not require a partial-wave expansion or approximate 
treatment of the off-energy shell effects, and all dia
grams in any given order can be included. Thus, we 
hope to learn something about the effects of approxima
tions used in the Brueckner calculations, and to answer 
questions such as that raised by the Brueckner-Gammel 
calculations in liquid He3. 

Deeper questions of the convergence of the perturba
tion series have been dealt with in a paper by one of 
the present authors3 (G.B.). We show in this paper 
that the sum of the ladder diagrams is bounded from 
above by the \ji, ^ + 1 ] Pade approximants and from 
below by the \ji,n] Pade approximants. 

An outline of our program is: First, a calculation of 
all terms in perturbation theory through fourth order, 
without approximation. These results are of interest 
independently of the rest of our work; they show that 
the most important diagrams, other than the ladder 
diagrams, at low density are not the self-energy dia
grams but the ring diagrams,4 the same diagrams which 
are most important at high density.5 

Second, a calculation of the sum of the ladder dia
grams and the sum of the Brueckner diagrams for 
various potential depths, using all the approximations 
ordinarily used in calculating Brueckner theory. Since 
we calculate the results for many potential depths, the 
series expansions through any order may be found by 
standard numerical techniques. By other techniques we 
separate the contributions of various diagrams in each 
order. Thus, we may compare the calculations of the 
first part of our program and the calculations of the 

3 G. A. Baker, Jr., Phys. Rev. 131, 1869 (1963). 
4 I t can be shown that this result is independent of the shape of 

the potential. In private conversation, K. A. Brueckner has 
suggested that this result may not hold near equilibrium densities 
for realistic potentials with long-range attractions and short-range 
repulsions. We do not, however, have any direct evidence on 
this point although Bethe's estimate [H. A. Bethe, Phys. Rev. 
103, 1353 (1956)] suggests it may be so for nuclear matter. See 
also the discussion of N. M. Hugenholtz (Ref. 5, p. 542). 

6 N. M. Hugenholtz, Physica 23, 533 (1957), Table on p. 542. 
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second part of our program to find how the approxima
tions ordinarily used in calculating Brueckner theory 
affect the contribution of any particular diagram. 

Thirdly, using the rigorous bounds established for the 
sum of the ladder diagrams, and the exact calculations 
done in the first part of our program, we are able to 
assess the numerical consequences of the approximations 
ordinarily used in calculating Brueckner theory in so 
far as they affect the sum of the ladder diagrams. We 
also attempt to assess these numerical consequences in 
so far as they affect the sum of the Brueckner diagrams, 
although our results are not completely rigorous because 
the Pade method does not give bounds in this case. 
Finally, we assess the numerical importance of diagrams 
omitted by Brueckner by including contributions of 
all diagrams in forming the Pade approximants but our 
results are subject to the criticism just mentioned; 
namely, that the Pade approximants do not give bounds 
for the complete series, although it likely gives a very 
good estimate of the value. 

Our conclusions are as follows. The numerical 
approximations made in evaluating the Brueckner 
theory are of no particular consequence, except for the 
treatment of off-energy shell propagation. The effects of 
this approximation are such that the opposite sign is 
obtained for the correction to the fourth order (the 
first order in which this approximation appears) ladder 
diagram for low {kFc<\) density. This error severely 
affects the numerical content of the Brueckner theory. 
As mentioned before, we believe this error to be the 
origin of the difficulty encountered by Brueckner and 
Gammel. 

We find that the sum of the complete series lies on 
the opposite side of the sum of the ladder diagrams from 
the Brueckner theory for low-to-moderate densities 
and low-to-moderate potential strengths. 

II. THE LOW ORDER TERMS IN THE MANY-
FERMION PERTURBATION SERIES 

We shall now describe the calculation of all the terms 
through fourth order in the interaction potential in the 
Goldstone6 expansion of the ground-state energy per 
particle of a system of many spin-J fermions. We first 
write out the integral for each Hugenholtz7 diagram and 
then perform these integrals by a Monte Carlo proce
dure on the IBM 7030. The potential taken is that 
for a square well of width c and depth V. The momen

tum transform is proportional to 

v(q) = (4:ir/qz) (smqkpC—qkFC cosqltFc), (2.1) 

where q, measured in units of the Fermi momentum, is 
the momentum transfer in the interaction. We will 
obtain terms in the expansion 

AEMcV (Nfi2) = A i (VMc2/h2)+A2( VMc2/h2)2 

+Az{VMc2/fi2y+->-. (2.2) 

The contribution Ai comes solely from Fig. 1(a). 
I t is 

3 / ( 2 V ) f d m d n [ w ( 0 ) - J w ( | m ~ n | ) ] , (2.3) 
J | m | < l , | n | < l 

where m and n are the momenta scaled by kF, the 
momentum at the top of the Fermi sea. This integral 
may be done analytically in terms of the sine integral 
Si(x): The result is 

(kFc)*\ 72 
2—[a* S i ( x ) - 4 - 3 x 2 + ( 4 + x 2 ) cosx 

9TT 1 x« 

+ 4 x sinx] , (2.4) 

where x is IUFC. 
The contribution A% comes solely from Fig. 1(b). 

(We denote holes by lines running left to right and 
filled-state lines vice versa.) I t is 

- 3 / [ 2 V ( f t * 0 2 ] 

r v(q)lv(q)-iv(\n-m-q\)2 
X / dmdndq , (2.o) 

J q2+q-(m-n) 
where the integration is carried over all values allowed 
by the Pauli exclusion principle; that is, all hole-line 
momenta are in the Fermi sea and all filled state-line 
momenta are outside the Fermi sea. We select the 
independent momenta in the Fermi sea according to 
the prescription that, say, mz=rh where r± is a random 
number which is distributed uniformly on the interval 

(b) 

FIG. 1. First, and 
second-order pertur
bation theory dia
grams. 

3 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957). 
1 N. M. Hugenholtz, Physica 23, 481 (1957). 

(a) (b) 

(c) (d) 

FIG. 2. Third-order perturbation theory diagrams. 
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1 .5 
FIG. 3. Class I, Fourth-order perturbation theory diagrams. 

IA. I A. 2 

I A . 3 

FIG. 4. Class IA, Fourth-order perturbation theory diagrams. 

(0,1). For momenta which can be infinite, we select a where both q and q\ go to infinity. The proper power 
filled-state momentum, say | m + q | = rfE, where r2 counting procedure here, as we have previously pointed 
is again a random number which is uniformly distrib- out,3 is to treat this term at infinity like l/(qqi). 
uted on the interval (0,1). The parameter E is selected The contribution to A$ comes from the four separate 
so that the integrand goes to a constant as r2 goes to diagrams shown in Fig. 2. For a further explanation for 
zero. For the second-order calculation, for example, the "flag" notation [Fig. 2(d)] , see Ref. 3. The various 
E= | . In other diagrams we will get terms like v(q— qi), contributions are: 

Fig. 2(a): 

Fig. 2(b): 

B 3 = 3 / [ 2 5 V ° ( £ K ) 4 ] 

H3 = 3 / [2 1 V°(*^) 4 ] 

Fig. 2(c): 

R3 = 3/[297r10(&^)4] 

r dmdndqdqiv{q)v{\q-q1\)[y{qi)-lv{\m-~n+ql\)~\ 

[g 2 +q . ( m - n ) ] [ g i 2 + q i . ( m - n ) ] 

dmdndqdqiv{q)v(q±)[y(\q-qi\)--lv{\q+qi+m.-n\)~] 

[ ^ 2 + q - ( m - n ) ] [ g 2 - ^ i 2 + ( q - q i ) - ( m - n ) ] 

• dmdndqdqi[y(q)-lv(\m-\-q-qi\)~] 

(2.6) 

(2.7) 

X-

[ ^ 2 + q - ( m - n ) ] 

C ^ ( g ) - ^ ( | n - q 1 | ) ] [ ^ ( g ) ~ ^ ( | n - m - q | ) ] - | ^ ( | n - m - q | ) ^ ( | m + q - q i | > ( | n - q i | ) 

Fig. 2(d): 

F 3 = - 3 / [ ( 2 * T ( ^ ) 4 ] 

[ g 2 + q . ( m - q ! ) ] 

dmdndqdqiv (q)[_v(q) — ^v(\n—m~q\)'] 

[ g 2 + q - ( m - n ) ] 2 

(2.8) 

[ v ( | q + m + q i | ) - K | m + q i | ) ] . (2.9) 

There are 46 diagrams which contribute to fourth order. Of these 46 there are only 28 distinct, nonzero ones. To 
facilitate the cataloging of them, we will break them down into classes. Those diagrams of class I are shown in 
Fig. 3. The contributions are all of the form 

-3/[21 47r1 3(^)3] 
dmdndqdqidq2v (q)v (x2)v (xz) [y (#4) — \v (x5)] 

(2.10) 
Q f + q . (m-n)~]D2D, 

The values of xi and Di are listed in Table I . I t is to be noted that 1.5 is identical to 1.2. For simplicity we may 
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TABLE I. Arguments of the potentials and denominators. 

Diagram 

I . l 
1.2 

1.3+4 
1.6 

IA.l 
IA.2 
IA.3 

X2 

| q - q i | 
1 a—ail 
]q 2 -q i 
1 a— a» 1 
|n—m-
|n—m-
|n—m-

- q | 

- q | 

-qi 

# 3 

Qi-qal 
q i - q 2 | 
q - q 2 | 
q2~qi | 
q i - m | 
ni —mi—q| 
n —mi| 

lai 
| n -

|n2 

X4 

Q2 

q2 

Qi 

qi 

- q 2 | 
~ m ! - q | 
- m | 

XB 

| n - m ~ q 2 | 
| n - m — q2| 
| n - m - q i | 
| n - m - q i | 

| n - q - q 2 | 
| n i - m - q | 
| n 2 - m i + q| 

A 
#i 2+qi*(m-n) 
gi2+qi'(m—n) 
gi2+qi'(m—n) 
? 2 - ^ i 2 + ( q - q i ) -
g 2 +q*(qi-n) 
2g 2 +q- (m+mi-
g 2+q*(m-mi) 

(m 

-n — 

- n ) 

ni) 

D* 

g2
2+q2'(m—n) 

qi2—g2
2+(qi — q2)* ( m - n ) 

g2-g22 + ( q - q 2 ) - ( m - n ) 
g 2 - g 2

2 + ( q - q 2 ) # ( m - n ) 

? 2 +q ' (q2-n) 
g 2 + q ' ( m - n ) 
g 2 +q«(n 2 -mi) 

combine 1.3 and 1.4. The diagrams in class IA are illustrated in Fig. 4 and all have contributions of the form 

r d*[v (q) - lv (>2)]|> (q) - \v (a?3)][> (q) ~ \v {xtfj? (q) ~ ¥ (%5)1+T&> fe> (xi)v (x±)v (x5) 
-3/ [2 1V 1 3 (^ ,^) 3 ] / — —- -_ • , (2.11) 

[22+q.(m-n)]£>2£>3 

where d* is the volume element and the Xi and A are given in Table I. The diagrams in class I I are illustrated in 
Fig. 5 and all have contributions of the form 

r d<sv(xi)[y(x2) — M ^ X K ^ - ^ K ^ X K ^ ) — 1 » W J - I K ^ i ) » W » W » W 
- 3 / [ 2 1 2 7 r 1 3 ( ^ ) 6 ] , (2.12) 

J [^+q.(m-n)p2A 
except, where indicated in the figure by a minus sign, there is the opposite sign. The Xi and Di are given in Table I I . 
The contribution of II.2 is identical with that of I I . l , II .3 with II.4, II.7 with 11.12, and II.8 with 11.11. The 
diagrams in class I I A are illustrated in Fig. 6 and all have contributions of the form 

- 3 / [ 2 1 V 1 3 ( ^ ^ ) 6 ] f , (2.13) 
J [g2+q.(m-n)]Z)2iV 

where 

r==fl(#i)2[^X3)2+^X4M^^ 

+v(x1)lvfay+v(xM**)ll<*^ (2-14) 

except for the noted sign changes. The Xi and Di are given in Table I I . The contribution of IIA.2 is identical with 
that of IIA.4. For Ti we have 

TI=V(X2)V(X4)V(XZ)V(XG) for IIA.1-4 

T^vix^vixejvixd2 for IIA.5-6. 
(2.15) 

m + q 

m+q, 

n. 

n . 3 

n.2 

m+q 

n .9 n.io 

n . 5 n . 6 -IE. 
FIG. 5. Class II , Fourth-order perturbation theory diagrams. 

- n . 1 2 
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TABLE II . Arguments of the potentials and denominators. 

Diagram 

I I . l 

I I . 4 

I I .5 
I I .6 
I I .7 

I I .9 
11.10 

11.11 

I I A . l 

I IA.2 
I IA.3 
I IA.5 

I IA.6 

Diagram 

I I . l 

I I .4 
I I .5 

I I .6 

I I .7 

I I .9 
11.10 

11.11 

I I A . l 

I IA.2 

I IA.3 
I IA.5 

I IA.6 

| n -

| n -
| n r 

| n -

|mi 

| n -

| n -
| n -

| n -
| n -

| n ~ 

| n -

|n2-

Xh 

- m 2 | 
- m 2 -

- m -

-m— 

— m 

- m 2 | 
-m— 

- m i | 

-m— 

-m— 

-m— 

- m 2 | 

- m -

- q i l 

-Qil 

•«l 
- q | 

•«l 

•1-
q -

q+ 

-Oil 

qil 

*l 
qil 

#1 

<i 

Q. 

Q. 

Qi 

q 

q 

Qi 

q 

q 

q 

q 
| q i -

k i -

q | 

q | 

|m 2 

|m 2 

| n -

|nx-
| n -

|m 2 

Im-
| m -

| n -

| n -

| n -

XG 

- m - q i | 

- m - q | 
n i - q | 

- n + q | 
mi —q—qi 

— m-f q i | 

- n + q i | 
- m i + q i | 

m i - q i | 

• m i - q i | 

m i - q | 

qi 

qi 

| q -

| q i -

x2 

-qil 

qi 

qi 

- q | 
| q + q i | 

iq-
| q ~ 
| q i -

| n -

| n -

| n -

|m 2 

| n -

1 

-qil 

-qil 

- q | 

m - q | 

m - q | 

m - q | 

- m - q | 

•n2— q + q i | 

2 i 2 + q i « ( m 

q2-qi2+(<l 
gi 2 +qi* (m-
g 2 + q « ( n i -

g 2 - f q « ( m -

g 2 - f q « ( m -

g 2 + q » ( m -

2 i 2 + q » ( m -

g i 2 +qi* (m : 

g 2 - f q - ( m -

g 2 + q « ( m -

g 2 + q - ( m -

2 2 + q - ( m -

D* 

- n ) 

X3 

|n—m—q— 

|n—m— q i | 

|n—m— q i | 

| n i - m - q i | 
| n - m — q i -

| n — m + q i -

|ni — m - q | 

|n—m—q— 

qi 

qi 

qi 
| n - m - q | 

| n - m - q | 

- q i ) « ( m - n ) 

- n ) 

-n) 

• n + q i ) + ^ i 2 + q i * (mi —n) 
•n) + q r ( m 2 

n) — q i« (m-

- m i ) 

i - n ) 

• n + q i ) 
•n) + qi«(mi 

n - q O + qi* 
• n - q i ) + qi-

- n ) 

- n i ) 

- n ) 
(n —m) 

( n - m ) 

qil 

1 
- q | 

- q | 

qil 

? i 2 +qi 

<72+q-
? i 2 + q i 

? i 2 +q: 
qi- (m] 
q2-qi2 

q- (q i -

<Z2+q-( 

^4 

qi 
| q - q i | 

| q - q i | 

q 

qi 

qi 

q 

qi 

| n - m i — q—qi | 
| n - m i - q - q i | 

| n — m i | 

q 

q 

D, 

L- ( m - m 2 ) 
( m - m 2 - q i ) + qi« ( m 2 - m ) 

• ( m - n i - q ) - r - ^ 2 + q * ( n i - n ) 
L- ( m - n i - q ) + ? 2 + q * ( n i - n ) 

L - m - q ) 
l + ( q + q i ) ' ( m - n ) 
- n + n i ) 

m—n) — qi« (mi — n) 

q2+q* ( q i H - m - n ) + ^ i 2 + q i * ( m i - n ) 

<Z2-hq-< 
qi* (m : 

<z2+q-

( q - q i 

; q i + m - n ) + g i 2 + q i « ( m i - n ) 

L - n + q ) 

( m — m 2 - q i ) + qi« ( m 2 - m ) 
) 2 - K q - q i ) - ( n 2 - n ) 

The diagrams of class I I I are illustrated in Fig. 7. Diagrams 3, 4, 5, 6, 11, and 12 vanish because they have (by 

momentum conservation) a hole and a filled state line with the same momentum. We have combined 7 and 8, 

and 9 and 10 for convenience. All the contributions have the form 

- 3 / [ 2 1 2 7 T 1 3 ( ^ ^ ) 6 ] 
dw(q)[y(q) — \b(| n - m ~ q | ) > ( x 2 ) [ i ) ( x 2 ) - ^ f e ) ] 

* [^+q- (m-n) ]*Z> 8 

(2.16) 

where the Xi and D{ are given in Table I I I . The opposite sign is used where noted in Fig. 7. The contributions from 

diagrams of class IV, the bubble diagrams, are listed below. The diagrams are shown in Fig. 8. The contribution of 

IV.2 is identical to IV.3, that of IV.4 to IV.5 and that of IV.6 to IV.7. 

IVA= -3/t2iW*(kFcY2 f dxv(q)lv(q)-^ 

[ ^ ( | m + q + m 2 | ) + ^ ( | n - q + m 2 | - ^ ( | m + m 2 | ) - 2 ; ( | n + m 2 | ) ] 
- f l ( | n+mi | ) ] , (2.17) 

[g2+q.(m~n)]3 

TABLE III . Arguments of the potentials and denominators. 

Diagram Dz 

I I I . l 
I I I . 2 

I I I . 7 + 8 
I I L 9 + 1 0 

qi 
| n - n i | 

qi 
| m + q - m i | 

| n i — m — q — q i | 

| n - m i | 

| m — m i — q i | 
|ni —m—q| 

22-fq« (m—n)+gi2+qi* (q-j-m—ni) 
g2+q# (m—n)-\-n2~n« (mi+iii)-f-ni*mi 
g i 2 + q i ' ( m i —m) 
(m+q) 2 +mi«n i - (m+q)* (mi-fiii) 
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[ ! > ( | m + q + m i | ) - f l ( | m + m i | ) ] 
I V J = + 3 / [ ( 2 , r ) » ( ^ ) « ^ — - -

J [g2+Q- ( m - n ) J 2 [ ^ i 2 + q r ( m - n ) j 
, (2.18) 

I V . 4 = + 3 / [ 2 ^ » ( ^ ) « ] / ^ { C K ( 7 ) - ^ ( | n - m - q | ) ] C V ( g ) - ^ ( | n - - q 1 | ) ] 

X [ ^ ( g ) - - ^ K | n i + q - q 1 | ) ] ~ t H | n - m - - q | ) K | n - q i | ) ^ ( | m + q - q i | ) } 

[ i < | m + q + m i | ) + z ) ( | n - q + m i | ) - - ' y ( ! m + m i | ) - - ^ ( | n + m i | ) ] 

Q/2+q. ( m - n ) ] 2 [ ^ + q . ( m - q i ) ] 

I V . 6 = + 3 / [ ( 2 * ) » ( £ F c ) ° ] ^ 

[ v ( | m + q + m i | ) — v ( | m + m i | ) ] 

, (2-19) 

We have now written out all the integrals which 
contribute to the many-body perturbation theory for a 
square-well force through fourth order. We shall now 
tabulate (Table IV) our best values for each of them, 
along with their standard deviation, for a selection of 
densities. As the number of Monte Carlo repetitions 
used varied from 2X105 to 2.8X106, we have used the 
central limit theorem to (i) show that the result 
obtained is normally distributed about the true answer 
and (ii) to estimate its standard deviation from the true 
result. 

The diagrams which are included in the Brueckner 

H A . I - E A . 2 

E A . 3 • E A . 4 

m+q 
+q-q. 

- I I A. 5 -XIA.6 
FIG. 6. Class IIA, Fourth-order perturbation theory diagrams. 

8 K. A. Brueckner, The Many-Body Problem, edited by C. 
deWitt (John Wiley & Sons, Inc., New York, 1959), pp. 65 etseq. 

x- •. (2.20) 
[ g 2 + q . ( m - n ) ] 2 [ ^ 2 - ^ 1

2 + ( q - q 1 ) . ( m - n ) ] 

approximation8 through fourth order, are Bl , B2, B3, 
F3, L I , I I I . l , I I I . 7 + 8 , IV.l , IV.2, and IV.3. 

III. THE NATURE OF THE LADDER 
APPROXIMATION SERIES 

One of the authors, (G.B.) has previously3 shown 
that the ladder approximation, i.e., the sum of the 
ladder diagrams, Bl , B2, B3, L I , • • •, is an asymptotic 
series whose terms increase asymptotically like n\ We 
shall show, however, that there is a unique function 
which is analytic in the cut plane (— <»,0) and asymp
totically equal to the perturbation expansion about the 
origin. (This function is, of course, the one obtained 
from the solution of the Bethe-Goldstone equation.9) 
We will show that the Pade approximant method2 which 
has been successfully applied to other physical prob
lems10 must converge here. In fact it can be used to 
obtain rigorous upper and lower bounds to the correct 
answer. Let v be the two-body potential operator and 
l/bi=P/(Ho—Ei), where H0 is the two-body kinetic 
energy operator, E% the unperturbed energy of the 
relevant two-body state and P a projection operator 
which is zero for states in the Fermi sea and one other
wise. The energy shift is then in ladder approximation 

A E = £ < * . 
/ 1 

i\l\v—v— 
\ b> 

1 1 
•v\2-\-v—v—v\z 

bi bi bi 

1 1 1 
- v—v—v—v\*-\ ) I fo), (3.1) 

bi bi bi 

where the sum on i is over the Fermi sea and X is 
regarded as an expansion parameter. Equation (3.1) 

9 H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London) 
A238, 551 (1957). 

10 G. A. Baker, Jr., Phys. Rev. 124, 768 (1961), 129, 99 (1963); 
J. L. Gammel and W. Marshall, Harwell Report, TPA-5 (1963). C. 
Domb and C. Isenberg, Proc. Phys. Soc. (London) 79, 659 (1962); 
J. S. R. Chisholm, J. Math. Phys. (to be published). J. W. Essam 
and M. E. Fisher, J. Chem. Phys. 38, 802 (1963). 
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mtq+q, m+ q 

m.i 

m.3 

-m.7 

m«q 

•m.9 

m.2 

nr.4 

-nr.io 

3 
FIG 

may 

AE = 

m . n HL12 

7. Class III , Fourth-order perturbation theory diagrams. 

be rewritten as 

-(vw») 

A3 

A 4+. 

= £ (<P*\ {X+ F A 2 + F,2X3+ VW+ • 

• j I <Pi) 

}\<fd, «.2) 

where <^=\A^ ' - Now the operator V% is Hermitian as 
1/bi is Hermitian, and in coordinate representation v is 
greater than or equal to zero so that \ A i s r e a^ a n d 
non-negative. If we now expand <pi in a complete 
orthonormal set of wave functions co^ which are eigen-
functions of Vi with real eigenvalues Vik, Eq. (3.2) 
becomes 

A £ = Z [ E ( ^ " ^ X 2 + ^ 2 X 3 - PVA 4 + • • •} 
i ft 

X | « « | 2 ] . (3.3) 

Since | a « | 2 > 0 and by the normalization of the original 

I E . I I E . 2 

I E . 3 

rz.5 I E . 6 

I E . 7 

FIG. 8. Class IV, Fourth-order perturbation theory diagrams. 

wave function, the expected value of v is finite 

(3.4) 

and if we denote by (— l)pcp the term from the coeffi
cient of the (/>+l)st power of X, then there exists a 
bounded, nondecreasing function ^>(w), such that 

upd<p(u). (3.5) 

The function (p will take on infinitely many values if 
and only if there are infinitely many eigenvalues 
involved. According to Theorem 86.1 of Wall11 Eq. (3.5) 

11 H. S. Wall, Analytic Theory of Continued Fractions (D. Van 
Nostrand Company, New York, 1948), Chap. XVII. 
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TABLE IV. Monte Carlo calculations. 

Diagram _____ 

B2b 

B3b 

H3 
R3 
F3b 

S3 
2B3 

I . l b 

1.2 
1.3+4 
I.5a 

1.6 
I-A.l 
I-A.2 
I-A.3 
II.l 
II.2a 

II.3 
II.4a 

II.5 
II.6 
II.7 
II.8 
II.9 
11.10 
I I . l l a 

11.12* 
II-A.l 
II-A.2 
II-A.3 
II-A.4a 

II-A.5 
II-A.6 
III . l b 

III.2 
I I I .7+8 b 

III.9+10 
IV. lb 

IV.2b 

IV.3b 

IV.4 
IV.5a 

IV.6 
IV.7a 

24 
SB4 

Diagram 

Bl b 

B2b 

B3b 

H3 
R3 
F3b 

23 
2B3 

I . lb 

1.2 
1.3+4 
I.5a 

1.6 
I-A.l 
I-A.2 
I-A.3 
II . l 
II.2* 
II.3 
II.4a 

II.5 
II.6 
II.7 

kFc = 0.25 
Value 

5.567499X10"4 

-1.960 XIO"4 

7.003 X10~5 

1.75 
-8 .60 

3.95 

X10~ 7 

xio-7 

X10~ 8 

6.939 X10~6 

7.007X10-5 

-2.506X10"5 

-6 .30 
-6.22 
-6 .30 
-9 .93 
-1 .01 
-4 .65 
-9 .39 

3.07 
3.07 
2.45 
2.45 
9.00 
2.28 

-2.77 
-4 .66 

1.45 
5.04 

-4 .66 
-2.77 
-9.12 
+4.94 
-6 .88 

4.94 
4.74 
4.41 

-3 .01 
-4 .59 

3.66 
6.86 

- 6 . 2 
-1 .35 
-1 .35 

1.83 
1.83 
3.90 
3.90 

xio-8 

xio-8 

xio-8 

X 10~10 

xio-8 

xio-9 

XIO" 9 

xio-7 

X10~ 7 

XIO" 9 

XIO" 9 

xio-8 

XIO" 7 

xio-9 

xio-9 

xio-9 

XIO"1 0 

xio-9 

xio-9 

xio-8 

xio-9 

XIO"3 0 

xio-9 

xio-9 

xio-9 

xio-7 

xio-9 

XIO" 7 

X10~9 

xio-12 

xio-8 

xio-8 

x io-10 

X IO"10 

xio-11 

xio-11 

-2.438X10-5 

-2.509X10-5 

IZFC — 

Deviation Value 

1.2X10-

5.7X10-
1.6X10" 
6.8X10-
2.3X10-
5.7 X10-' 
5.7X10-

1.9X10-
6.1 XIO"1 

6.0X10-
6.1X10-
1.8X10-
2.9X10-
1.8X10-1 

1.5 XIO"1 

3.1X10-8 

3.1X10~S 

4.3X10-1 

4.3X10-1 

4.5X10"1 

1.5X10-S 

2.3 XIO"1 

1.7 XIO'1 

3.3 XIO"1 

1.3X10-
1.7X10-
2.3X10" 
4.6X10-
1.2X10-
1.0x10-
1.2X10-
4.7X10-
6.3X10-
2.1X10-
5.9X10-
1.6X10-
2.0X10-
1.0x10-
4.9X10-
4.9X10-
9.8X10-
9.8X10-
3.2X10-
3.2X10-
1.9X10-
1.9X10-

h,FC — 

Value 

3.936174X10"2 

- 7.495 XIO"3 

1.538X10"3 

7.87 
-3 .30 

8.08 

XIO" 5 

XIO" 4 

X I O " 5 

1.368X10-3 

1.619X10"3 

- 3.347 XIO"4 

-1 .75 
-1 .85 
-1 .75 
-2 .19 
-1 .89 
-7 .82 
-1 .67 

7.40 
7.40 
5.23 
5.23 
3.42 
4.18 

-4 .23 

X I O -

xio-6 

XIO" 5 

xio-6 

X I O " 5 

xio-* 
X10-* 
XIO-5 

xio-5 

X10~ 6 

X10~ 6 

xio-* 
XIO" 6 

X I O " 6 

4.551588X10" 

- 1 . 3 4 6 X 1 0 " 3 

7 4 .146X10- 4 

4.45 X10~ 6 

- 2 . 1 4 XIO" 5 

0 2.10 X10~ 6 

4.00 XIO" 4 

1 4 .167X10- 4 

1 - 1 . 2 8 8 X 1 0 - 4 

0 - 1 . 3 6 XIO" 6 

0 - 1 . 4 1 X10~ 6 

0 - 1 . 3 6 XIO" 6 

1 - 5 . 5 8 XIO" 8 

0 - 5 . 3 6 X I O - 7 

0 - 2 . 4 0 XIO" 7 

0 - 4 . 9 4 XIO" 7 

6.71 XIO" 6 

6.71 X I O " 6 

1 1.38 XIO" 7 

1 1.38 XIO" 7 

0 2.72 XIO" 6 

4.22 X10~ 6 

1 - 1 . 4 6 XIO" 7 

0 - 1 . 9 6 XIO" 7 

1 8.06 XIO" 8 

1 2.92 X10~ 8 

0 - 1 . 9 6 XIO" 7 

1 - 1 . 4 6 XIO" 7 

0 - 2 . 8 0 XIO" 6 

0 2.84 XIO" 7 

1 - 4 . 2 6 XIO" 8 

0 2.84 XIO" 7 

1 2.22 X10~7 

11 2.11 XIO" 7 

r - 6 . 1 3 XIO" 6 

1 - 2 . 5 4 XIO" 7 

8.28 XIO" 6 

0 3.67 XIO" 7 

2 - 3 . 4 6 X10~9 

0 - 6 . 7 9 XIO" 7 

0 - 6 . 7 9 X I O - 7 

2 3.60 XIO" 8 

2 3.60 XIO" 8 

2 7.70 XIO- 9 

12 7.70 XIO- 9 

7 - 1 . 1 4 9 X 1 0 - 4 

7 -1.280X10-4 

1.0 
Deviation 

1.9X10-5 

5.0X10-6 

5.6X10-7 

1.7X10-6 

8.3X10-7 

5.3 XIO"6 

5.1X10-6 

2.1 XIO"6 

3.4X10"7 

3.4X10"7 

3.4X10"7 

3.7X10"8 

5.4X10"7 

2.2XKT7 

2.4X10"7 

4.8X10-7 

4.8X10-7 

7.0X10-8 

7.0X10-8 

3.9X10"7 

5.4XKT7 

2.9X10"8 

=0.50 
Deviation 

-3 . . . 

2.4X10"6 

1.7X10"6 

4.3 XIO"8 

I.6XIO-7 

5.0X10-8 

1.7X10"6 

1.7X10-6 

4.4X10-7 

5.0X10-8 

4.5 XIO"8 

5.0X10"8 

9.5 XIO"10 

1.6X10-8 

8.4X10"9 

7.2X10"9 

I.OXIO-7 

I.OXIO-7 

2.1X10-9 

2.1X10-9 

I.OXIO-7 

9.5X10-8 

1.2X10-9 

3.7X10-9 

1.5X10-9 

7.2X10-10 

3.7X10"9 

1.2X10"9 

3.7 XIO"8 

6.6XIO-9 

6.2 XIO"10 

6.6XIO-9 

2.1X10-9 

2.9X10-9 

9.7 XIO-8 

3.0X10-9 

1.2X10"7 

9.3X10"9 

3.3 XIO"10 

4.5 XIO"8 

4.5X10"8 

1.2X10-9 

1.2X10-9 

3.6X10"10 

3.6X10-10 

5.5X10"7 

4.8X10-7 

Value 

kFC = 
Value 

1.589397X10' 

-3.827X10-3 

9.742 XIO"4 

2.57 XIO" 6 

-1.175X10-4 

1.89 XIO" 5 

9.013X10"4 

9.931 XIO"4 

- 2.571 XIO"4 

-6.82 
-7.10 
-6.82 
-5.16 
-4.68 

XIO" 6 

xio-6 

xio-6 

xio-7 

X I O " 6 

-2.00 X10~6 

-4.24 X10~6 

3.15 
3.15 
1.26 
1.26 
1.39 
1.86 

-1.20 
-1.34 

7.34 
2.80 

-1.34 
-1.20 
-1.68 

2.73 
-4.57 

2.73 

X I O - 5 

X10~ 5 

xio-6 

xio-6 

X I O - 5 

xio-* 
X I O " 6 

xio-6 

xio-7 

xio-7 

xio-6 

xio-6 

X I O - 5 

XIO" 6 

XIO" 7 

xio-6 

1.64 XIO"6 

1.65 
-3.01 
-2.31 

4.21 
3.15 

-9.75 
-4.62 
-4.62 

6.15 
6.15 

XIO" 6 

X I O - 5 

XIO" 6 

X10~ 5 

xio-6 

xio-8 

xio-6 

xio-6 

XIO-7 

XIO-7 

1.40 XIO"7 

1.40 XIO"7 

-1.989X10-4 

-2.544XKT4 

kpCz 

1.475170X10-1 

-1.715X10-2 

2.190X10-
2.81 

-7 .98 
5.05 

xio-
xio-
xio-

2.178X10-
2.695X10-

-3 .01 
-3 .93 
-4 .51 
-3 .93 
-1 .16 
-1 .01 

xio-
xio-
xio-
xio-
xio-
xio-

-4 .56 X10-
-8 .50 X10-

1.20 X10-
1.20 X10-
2.39 
2.39 

xio-
xio-

4.76 X10-
5.85 xio-

-1 .06 X10-

-3 

-4 

4 

4 

3 

3 

4 

5 

5 
5 

5 

4 

4 

5 

4 

4 

5 

5 

-5 

-5 

-5 

= 1.5 

0.75 
Deviation 

-2 . . . 

4.6X10"6 

3.1 XIO"6 

2.0X10-7 

6.4X10"7 

2.5X10"7 

3.2X10-6 

3.1 XIO"6 

1.1X10-6 

1.5X10-7 

9.4X10-8 

1.5X10-7 

8.6XIO-9 

1.4X10"7 

6.0X10-8 

5.8X10"8 

2.2X10"7 

2.2X10-7 

1.7 XIO"8 

1.7 XIO"8 

1.9X10"7 

2.9X10"7 

l.oxio-8 

1.8X10-8 

1.3 XIO"8 

7.0X10-9 

1.8X10-8 

l.oxio-8 

1.7X10-7 

6.3X10-8 

6.7X10-9 

6.3X10~8 

1.9X10-8 

2.5X10"8 

2.8X10-7 

2.7X10-8 

3.0X10-7 

6.5X10-8 

3.8X10-9 

1.4X10-7 

1.4X10-7 

l.oxio-8 

l.oxio-8 

3.9X10-9 

3.9X10"9 

1.4X10-6 

1.2X10-6 

Deviation 

4.8X10-5 

I.IXIO-5 

2.2X10-6 

7.7X10"6 

4.6X10-6 

1.4X10"5 

1.2X10-5 

4.7X10"6 

6.6X10"7 

6.8XIO-7 

6.6XIO-7 

2.3X10"7 

l.oxio-6 

8.8XIO-7 

8.4X10"7 

1.2X10-6 

1.2 X10~6 

3.3X10"7 

3.3X10"7 

9.5X10-7 

1.4X10"6 

2.1X10-7 
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TABLE IV (continued) 

kFC = 1 . 0 kFC= 1.5 
Diagram 

II.8 
II.9 
11.10 
I I . l l a 

11.12" 
II-A.l 
II-A.2 
II-A.3 
II-A.4a 

II-A.5 
II-A.6 
I I I . l b 

III.2 
I I I .7+8 b 

III.9+10 
IV. lb 

IV.2b 

IV.3ab 

IV.4 
IV.5a 

IV.6 
I V > 
24 
2B4 

Value 

-4 .00 X10~6 

3.02 X10~6 

1.22 X10~6 

-4 .00 X10"6 

-4 .23 X10~6 

-5 .21 X10~5 

1.24 X10~5 

-2 .35 X10~6 

1.24 X10~5 

5.62 X10~6 

6.31 X10~6 

-8 .32 X10~5 

-9 .81 X10~6 

1.155X10-4 

1.24 X10~5 

-9 .08 X10~7 

-1 .65 X10-5 

-1 .65 X10-5 

3.74 X10~6 

3.74 X10~6 

9.42 X10~7 

9.42 X10-7 

-2 .19 X10-4 

- 3.363 X10"4 

Deviation 

6.6X10~8 

5.5X10-8 

3.2X10"8 

6.6X10-8 

2.9X10~8 

5.4X10"7 

2.9X10-7 

3.6X10-8 

2.9X10-7 

9.1 XIO"8 

1.2X10"7 

5.3X10"7 

1.3X10"7 

6.7X10-7 

I.6XIO-7 

2.2X10"8 

3.7X10-7 

3.7X10"7 

4.7X10"8 

4.7X10"8 

2.4X10"8 

2.4X10-8 

2.9X10-6 

2.4X10-6 

Value 

-6 .23 X10~6 

1.33 X10-5 

6.38 X10~6 

-6 .32 X10-6 

-1 .06 X10-5 

-2.17X10-4 

8.41 X10-3 

-2.03X10"5 

8.41 X10~5 

3.12X10"5 

4.01 XIO"5 

-2.78X10-4 

-5.69X10"5 

3.68XIO-4 

6.53X10-^ 
-1.55X10-5 

-6.42X10-5 
-6.42X10"5 

2.47 X10-5 

2.47 X10-5 

9.36X10-6 

9.36X10"6 

-2.64X10"4 

-3.55X10"4 

Deviation 

3.9X10"7 

2.7X10"7 

1.7X10"7 

3.9X10"7 

2.1X10-7 

9.8X10-7 

1.7 X10~6 

2.8X10"7 

1.7X10-6 

5.7X10"7 

7.8X10-7 

1.8X10"6 

8.0X10"7 

2.9X10-6 

6.4X10"7 

1.7X10-7 

8.9X10-7 

8.9X10"7 

3.4X10"7 

3.4X10-7 

1.9X10-7 

1.9X10"7 

8.2X10-6 

6.1X10-6 

kFC = 2.0 kpc = 3.0 
Diagram 

Bl b 

B2b 

B3b 

H3 
R3 
F3b 

S3 
2B3 

I . lb 

1.2 
1.3+4 
I.5a 

1.6 
I-A.l 
I-A.2 
I-A.3 
II . l 
II.2a 

II.3 
II.4a 

II.5 
II.6 
II.7 
II.8 
II.9 
11.10 
11.11* 
11.12* 
II-A.l 
II-A.2 
II-A.3 
II-A.4a 

II-A.5 
II-A.6 
I I I . l b 

III.2 
I I I .7+8 b 

III .9+10 
IV. lb 

IV.2b 

IV.3ab 

IV.4 
IV.5a 

IV.6 
IV.7a 

24 
2B4 

Value 

3.901006X10-1 

-2.868X10-2 

2.44 X10~3 

4.99 
-2 .61 

1.51 
4.19 
3.95 

-2 .25 
-4 .13 
-4 .69 
-4 .13 
-2 .39 
-2 .80 
-1.77 
-2 .32 

1.98 
1.98 
2.86 
2.86 

-3 .51 
-1.67 
+ 1.05 
+ 1.92 

1.29 
8.46 

+ 1.92 
+ 1.05 
-5 .28 

2.86 
-7.87 

2.86 
1.39 

X10-4 

X10-4 

X10"3 

X10-3 

X10-3 

X10-4 

X10-5 

X10-5 

X10-5 

X10-5 

X10-4 

X10-4 

X10-4 

X10~5 

X10-5 

xio-6 

X10-5 

xio--5 

xio-* 
xio-s 
XIO"6 

XIO"6 

X10~6 

XIO"5 

XIO"5 

XIO"4 

XIO"4 

XIO-5 

XIO"4 

XIO"4 

1.54 X10-4 

-5 .75 
-1 .71 

7.36 
1.80 

-8 .43 
-1.32 
-1.32 

1.21 
1.21 
3.12 
3.12 

-7.75 
-4 .12 

XIO"4 

XIO-4 

XIO"4 

XIO-4 

XIO"5 

XIO-4 

XIO"4 

XIO"5 

XIO"5 

XIO"5 

X10~5 

XIO"4 

XIO"4 

Deviation 

5.9X10-5 

2.0X10-5 

5.7X10-6 

1.3X10~5 

1.5X10-6 

2.9X10~5 

2.5X10-5 

9.4X10-6 

1.4X10-6 

1.3 XIO"6 

1.4X10"6 

7.0X10-7 

5.2X10~6 

2.6X10"6 

3.2X10-6 

3.9X10-6 

3.9X10-6 

1.4X10~6 

1.4X10~6 

2.7X10~6 

4.0X10-6 

l.ixio-6 

1.8X10-6 

1.1 xio-6 

7.4X10"7 

1.8X10-6 

1.1 XIO"6 

3.6X10-6 

8.8X10-6 

1.5X10-6 

8.8X10-6 

2.1X10-6 

2.0X10-6 

5.7X10-6 

3.7X10-6 

i.oxio-s 

2.4X10-6 

8.8XIO-7 

2.6X10-6 

2.6X10"6 

1.8X10-6 

1.8 XIO"6 

8.4X10-7 

8.4X10-7 

2.8X10-6 

I.6XIO-5 

Value 

1.574696X10° 

-5.367 XIO"2 

2.73 
8.21 

X10~3 

XIO"4 

+4.75 XIO"3 

4.45 XIO"3 

1.275X10-2 

7.18 

-1 .09 
-3 .54 
-2 .71 
-3 .54 
-2 .82 
-1 .35 
-1 .06 
-1 .30 
-2 .46 
-2 .46 
-1 .00 
-1 .00 
-2 .39 
-2 .36 

1.36 
1.38 

-9 .71 
-3 .51 

1.38 
1.36 

XIO"3 

XIO-4 

XIO"5 

XIO"5 

XIO"5 

XIO-5 

XIO"3 

XIO"3 

XIO"3 

X10~4 

XIO"4 

XIO"4 

XIO"4 

XIO"4 

XIO"4 

XIO"4 

XIO"4 

XIO"5 

XIO"5 

XIO"4 

XIO"4 

-1.228X10-3 

1.258X10-3 

-3 .76 XIO"4 

1.258X10"3 

6.85 
6.92 

XIO"4 

XIO"4 

-1.248XH)-3 

-5.92 XIO"4 

1.568X10-3 

6.71 
-3 .90 
-2 .67 
-2.67 
-4 .86 
-4 .86 

8.95 
8.95 

-3 .73 
-7 .13 

X10~4 

XIO"4 

XIO"4 

XIO"4 

XIO-4 

XIO"4 

XIO"5 

XIO"5 

XIO"3 

XIO"4 

Deviation 

3.3X10-4 

1.2X10"4 

2.1X10-5 

2.0X10-4 

6.6X10"5 

2.4X10"4 

1.4X10"4 

2.8X10"5 

4.6X10"6 

4.0X10~6 

4.6X10"6 

2.0X10"6 

8.4X10-6 

5.6X10-5 
1.2X10"4 

3.2X10-5 
3.2X10-5 
1.3X10-5 
1.3X10-5 
3.3X10-5 
4.2X10-5 
1.1X10-5 
1.2X10-5 
9.7 XIO"6 

6.7 XIO"6 

1.2X10-5 
1.1X10-5 
5.3X10-5 
6.6X10-5 
1.5X10-5 
6.6X10-5 
2.3X10-5 
3.3X10-5 
6.5X10-5 
3.1X10-5 
6.5X10-5 
3.3X10-5 
7.7X10"6 

4.6X10-5 
4.6X10-5 
3.3X10-5 
3.3X10-5 
5.5X10-3 

5.5X10"6 

2.6X10-4 

1.3X10-4 

* Identical with a previous diagram (but must be added to find the total fourth-order coefficient). 
b Included in the Brueckner approximation. 
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is necessary and sufficient that 

Co 

Ci, 

Cp) 

•a, 

C*> 

Cp+l 

Cp+i 

C2p 

> 0 # = 0,1,2, (3.6) 

except if only a finite number of eigenvalues occur all 
A p = 0 for p>P. If we now define the Hermitian 
operator Wi= (\/^Jbl)v(\/\/bl) and define ^ = (\/\/b%) 
Xin//i, then a similar argument implies that 

C\ 

C2 

Cp+l, 

C2, 

ch 

Cp+2, 

' 5 CP+1 

• , CP+2 

'> C2p+ 

> 0 

£ = 0 ,1 ,2 , (3.7) 

except again where there are only a finite number of 
eigenvalues. According to Wall's theorem 87.1, Eqs. 
(3.6) and (3.7) are necessary and sufficient that the cp 

form a series of Stieljes, and hence that 

upd(p(u). (3.8) 

As the coefficients only diverge3 like n\ we are dealing 
(Theorem 88.1)11 with the case of a unique (p. Hence, 
the diagonal Pade approximants converge to the unique 
function 

A £ ( X ) = / — , (3.9) 
Jo 1+^X 

1.030 

1.020 

1.010 

1.000 

Q o n 

1 1 

/ 1 

1 

1 1 1 

1 
1 

1 1 1 1 

^BRUECKNER 

T 

-

/ ~ 

/COMPLETE 

/ 

T / LADDEFT 

r - * ^ 

J i 

T 

1 

Y 

J _l 1 1 1 
0.5 1.0 2.0 

FIG. 9. Comparison of the ladder approximation, the Brueckner 
approximation, and the complete perturbation theory for 7 = 2.5 
as represented by the [1,2] and [2,2] Pade approximants. For 
convenient presentation the results have been normalized by 
dividing by the [1,1] Pade approximant. 

defined by the perturbation series. The Pade approx
imants [N,M~] are the ratio of two polynomials P M ( X ) / 
QJV(X) determined so as to match the first M + i V + 1 
coefficients of Xn in the [_QN (0) = 1.0] power-series 
expansion. Furthermore, according to Wall's problem 
17.3,11 the sequence of [A^V] Pade approximants are 
less than (3.9) for all real positive X and the [N, N + l ] 
are all greater for real positive X. We will use this 
result in a subsequent section to bound the true result 
and to compare with results of the solution of the 
ladder approximation integral equation obtained with 
the usual approximations. 

I t should be noted that these bounds are the best 
obtainable when only the information concerning the 
specific potential contained in the coefficients used to 
form the approximants is considered. This result is so 
because there exist (velocity-dependent) potentials for 
which the relevant Pade approximant is an exact 
answer; namely, they belong to the class of potentials 
which are diagonal in the momentum representation 
and couple only A7'-momentum states. Even so, the 
covergence at the hard-core limit (X= + oo) may be 
relatively slow2 for asymptotic series. 

IV. COMPARISON OF THE RESULTS OF THE 
LADDER AND BRUECKNER APPROXIMA

TIONS FOR SOFT REPULSIVE 
SQUARE-WELL POTENTIALS 

On the basis of the perturbation theory coefficients 
obtained in Sec. II , we may, as shown in Sec. I l l , for 
various values of the strength V, give upper and lower 
bounds for the ladder approximation. That is, it must 
lie between the [2,2] and the [1,2] Pade approximants. 
We shall assume that for the complete theory and the 
Brueckner approximation that, while the approximants 
may not bound the function values, the difference 
between the [2,2] and the [1,2] gives a measure of 
accuracy of the [2,2] and that where the difference 
between the theories as indicated by the [2,2] is large 
compared to the apparent error in the [2,2], the 
ordering of the theories is correctly given. For sample 
potential values we have chosen (VMc2/h2) = 2.S and 
5.0. These correspond to slightly less and slightly more 
than a half-hard core (in terms of the scattering length). 

In Figs. 9 and 10, we have, for convenience, plotted 
the ratio of the [1,2] and [2,2] to the [1,1] (the [1,1] 
approximant is the same for the ladder approximation, 
the Brueckner approximation, and the complete 
perturbation series). 

The points represent the values of the approximants. 
The [2,2] are joined by lines and the different theories 
are slightly offset for clarity. The flags represent 
statistical uncertainty in the values of the approximants 
due to inaccuracies in the calculation of the coefficients. 

We see that at low densities the complete theory 
lies below the ladder approximation while the Brueckner 
approximation lies above it. The reason that the 
Brueckner approximation is less accurate than the 
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1.12 

1.08 H 

1.04 

1.00 

i 1 1 1 1 1 ' r 

^BRUECKNER 

'"COMPLETE ' 

0.5 1.0 2.0 

FIG. 10. Comparison of the ladder approximation, the Brueckner 
approximation, and the complete perturbation theory for F = 5.0 
as represented by the [1,2] and [2,2] Pade approximants. For 
convenient presentation the results have been normalized by 
dividing by the [1,1] Pade approximant. 

ladder can easily be seen by looking at the third order 
terms. The first low-density corrections to the ladder 
diagram B3, is the ring diagram R3 and the hole-hole 
interaction diagram H3. These terms are proportional 
to (kFc)b. Brueckner includes diagram F3 which is 
proportional to (kFc)& and has the opposite sign from 
R3. The same trouble also occurs in fourth order 
where the leading order corrections are given by II . 1, 
II.2, II.6, and 1.3+4 which are proportional to (kFc)6 

(III . l , I I I . 7+8 , II.5 and IIA.l cancel in pairs). 
Brueckner again includes only corrections proportional 
to (kFc)Q. We estimate that for a hard core, the differ
ence between the theories must be at least 10-20%. 
I t is hard to assess the differences between the theories 
when both attraction and repulsion are present, but we 
know of no reasons not to suppose that they are 
substantial. 

The rigorous upper and lower bounds which we 
obtained for the ladder approximation allow us to assess 
the accuracy of the standard solution procedures which 
we describe in detail in the next section. Comparison 
reveals that the accuracy of the standard solution is 
reasonably uniform in density (0.25<kFc<3.0). The 
solution obtained is about 0.5% high for small F ( F « 1 ) . 
As V increases to around 5 the solution rises to become 
about 1 to 2\% high as kFc varies from 0.25 to 3.0. At 
larger potentials the standard solution lies between the 
upper and lower bounds so no firm conclusion can be 
drawn about the accuracy. For infinite F ( T = 1 0 5 ) the 
lower bound drops (kFc>0.75) to about two-thirds of 
the standard solution. At kFc=0 the lower bound is 

14/15 of the exact answer. From a consideration of the 
way in which errors occur in the standard solution, we 
feel that even at infinite potential it is probably not 
worse than about 10% high and that it has a reasonably 
consistent bias. 

That the Pade approximants to the ladder approxima
tion should be so relatively low for the hard-core limit 
is somewhat disappointing; however, the reasons are 
fairly clear. As pointed out above, the Pade approxi
mants converge more slowly for asymptotic series than 
they do for convergent ones. Furthermore, the point 
V= Qo is a singularity of the function, and the con
vergence of the sequence of Pade approximants is 
frequently much slower at singular points than at 
regular points. For instance, a somewhat analogous 
case, [1 —x~ 1 l n ( l+^) ] , is of the form of Eq. (3.9). 
Luke12 has shown that for 0<x< oo the convergence * of 
the ZN,N~] Pade approximants is exponential. Yet at 
x= + co the error in the [_N,N] is (7V+1)~2. 

As we will explain in the next section, the numerical 
solution for the Brueckner approximation is not strictly 
comparable with the results obtained from the inferred 
power series expansion. The additional computational 
approximation introduced, in contrast to those also 
used in the solution of the ladder approximation integral 
equation, is rather poor. Consequently, while the 
expected departures from the ladder theory as shown 
in Figs. 9 and 10 occur for weak potentials, at large 
potentials the aas practiced" Brueckner approximation 
lies only slightly above that of the ladder approximation 
and actually crosses below it near kFc=1.5. By the 
time the Brueckner approximation ceases to exist near 
kFc=2.0y it is (for F=10 5 ) only about two-thirds as 
large as the ladder approximation. 

V. THE BRUECKNER THEORY AS ORDINARILY 
CALCULATED 

A rigorous formulation of the iT-matrix equation, 
including off-energy shell effects correctly, is set forth in 
Appendix A of Brueckner and Gammel.13 In order to 
carry out calculations, it is usual to eliminate the 
dependence of the K matrices on the total momentum 
by making the following approximations. An energy 
denominator D 

Z > = £ ( i p + k ' ) + £ ( J p - k ' ) 

- £ ( i p + k ) - E ( * p - k ) , (5.1) 

where p is the total momentum, k is the relative momen
tum in the initial state, and k' the relative momentum 
in the intermediate state (an integration variable in 
the i^-matrix equations), is set equal to 

D=2lE{k')-E(k)~}. (5.2) 

This is correct if the E's are approximately quadratic 

12 Y. L. Luke, J. Math, and Phys. 37, 110 (1958). 
13 K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023 

(1958). 
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functions of their argument. The Pauli principle 
requires that the integration over k' be restricted to a 
region R such that 

\±p+k'\>kF and \±p-k'\>kF in R. (5.3) 

This is approximated by replacing 

f dk'-> I dk'F(p,k',k), (5.4) 

where V is the potential. The K matrices are given by 

2 /•* 
Ki(k) = ~ / ji(kr)V(r)uki(r)r*dr, (5.10) 

X Jo 

and the single-particle energies by 
2 r- r(kF—m)l2 

E(m) = Hi 
2 

where 

F(p,k',k) = 0, ( * ' 2 + W * < * , 

J o 

p(JcF+m)l2 / 

i v 
J (kF-m)/2 X 

2k2dkl 

m2+W-kF* 
k2dkl 

k'p 
otherwise. (5.5) 

(m+/;i<')/2 

(m—kF)/2 

4:km 

m<kF 

m2+U2-kF
2 

4:km 

where 
To eliminate p completely, an average value p is used 
in place of p: 

Ik Ik2 

1+--+ 
k \ 2 kF 6 kF

2 

k<kF (56) 
kFJ 1 k 

(1 I even\ 

k2dkl 

m>kFj (5.11) 

(5.12) 

1 P 2 = W I — 
i + -

2 kF 

\3 I odd / 

Finally, the average binding energy per particle is 

,kF , m 2 \ 

/ \ E{m) )m2dm. (5.13) 
Jo V 2 / 

3 rhF / w^> 
7̂ 6 = —— / ( E (m) ) m2dm. 

2kF*Jo V 2 
- 0 k>kF . 

The off-energy shell effects have to be approximated 
also [the K matrices and single-particle energies 
depend on a variable H according to Brueckner and 
Gammel, Appendix A; we have already suppressed this 
fact in writing Eq. (5.1)]; eventually the following set 
of equations, which are the same as the equations used 
by Brueckner and Masterson in their recent work14 

are, arrived at, after transforming the equations to 
coordinate space, as done in Refs. 13 and 14. The 
Green's function is 

r ji(k"r)ji{k"r') 
Gki(r,r')= k"Hk" F(pyk

f\k), (5.7) 
Jo 2[E(*")-A(fe)] 

where j is a radial Bessel function, / is the angular 
momentum, and 

A(k) = E(k) k<kF 

= E(kF)-f[E(kF)-E(0)l k>kF, (5.8) 

where / is chosen arbitrarily. I t is in the definition of 
A(&) that approximations to off-energy shell effects 
manifest themselves. Continuing with the equations, 
the wave function u satisfies the integral equation 

Perhaps the only point worth commenting on is the 
origin of complicated factors in Eq. (5.11); the expected 
equation is 

m2 2 
E (m) = — + _ / J n [ (m n | K \ m n) — ̂ exchange]. 

(2TT) 3 

(5.14) 

Instead of n, the variable k = J(m—n) has been used, 
and the requirement n<kF, and an integration over the 
angles of k, results in the factors. 

We are not interested in the details of these equations, 
or the techniques used in solving them, which have 
been discussed at length in Refs. 13 and 14. A few 
details of our computational procedure follow: In 
calculating the Green's function [Eq. (5.7)] we used 
an interval size A & ^ O . I & F , and did a Simpson's rule 
integration to kff=10kF. For the contribution AG from 
10&F to oo, we used an asymptotic expression 

F (y) = cosy-

! + £-! 
\20 3. > 

x / 3 3 \ / l 1 
l + - y + ( — 7T2— W —a-2 — 

2 \10 2/ \40 6 

uki(r) = Mkr) / Gki(r}r')V(r')uki(r')r'2dr', (5.9) 
TT Jo 

6+y 

AG=- ~[F{mkF{r'~r))-{-\)lFi\OkF{rf+r))-] 

14 K. A. Brueckner and K. S. Masterson, Jr., Phys. Rev. 128, 
2267 (1962). 

20kprr' 

F(y) is an approximation to y J*y°° (cosx/x2) dx. 
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TABLE V. Values of Eb obtained by solving the iT-matrix equations using the usual techniques.* 

V 
0 

0.0625 
0.125 
0.1875 
0.25 
0.3125 
0.375 
0.4375 
0.5 
0.5625 
0.625 
0.6875 
0.75 
0.8125 
0.875 
0.9375 
1.00 

^ladder 

0 

2.4415 73584 
4.8278 02569 
7.1607 22258 
9.4422 65658 
11.6742 69970 
13.8584 82583 
15.9965 66616 
18.0901 06045 
20.1406 10458 
22.1495 19464 

483 
904 
662 
171 
11 
59 
60 
51 
47 
82 

-^Brueckner \j — 

1 

2.4415 
4.8279 
7.1611 
9.4432 
11.6761 
13.8615 
16.0011 
18.0966 
20.1495 
22.1611 
24.1330 
26.0663 
27.9624 
29.8225 
31.6476 
33.4389 

0 

91911 
41356 
66200 
64179 
22607 
27000 
68776 
52158 
00394 
61370 
12707 
66395 
73014 
25610 
63232 
74198 

0.1) 

4267 
8167 
7132 
6068 
583 
580 
249 
572 
278 
376 
885 
184 
938 
709 
903 
271 

^first order 

2.4415 
4.8279 
7.1612 
9.4433 
11.6764 
13.8620 
16.0021 
18.0982 
20.1519 
22.1646 
24.1379 
26.0730 
27.9712 
29.8337 

0 

92505 
50061 
07461 
87098 
06409 
84742 
49673 
42837 
25312 
82599 
29234 
13052 
19158 
73597 

7001 
0416 
6933 
0365 
188 
460 
596 
263 
047 
677 
137 
758 
194 
385 

a All entries are multiplied by 103. 
h Means only first-order terms retained in the single-particle energies. 

In solving Eq. (9) we used an 11X11 mesh (10 
intervals) and a trapezoidal rule. The same mesh was 
used in Eq. (10) and the same trapezoidal rule. Equa
tion (11) was integrated with Ak=l/20kF and a 
Simpson's rule. Equation (13) was integrated with 
Am= YOJZF and Simpson's rule. 

The single-particle energy tables were interpolated 
using three points in the Green's functions integration. 
The energy tables were cut off at 4&F. Tests showed 
this cutoff to be adequate. Contributions to the angular 
momentum expansion were neglected for l>2(kFC^l)l 
>3(kFc=1.5), and />4(& F c>2) . 

The energy tables were chosen initially to be E(m) 
= tn2/2 for all m; the equations were iterated until the 
single-particle energy table was self-consistent to 4 
decimal places. 

For the square-well potential, we may calculate Eb 
for any number of potential depths, and from the data 
we may find the series expansion of Eb to any number 
of terms. Some results are shown in Tables V and VI. 

The ladder approximation is obtained by using 

E(m)==m2/2 (5.15) 

instead of Eq. (5.11), and otherwise proceeding in the 
same way as in the case of the Brueckner theory. 

In comparing Table VI with the exact Monte Carlo 
calculation of these expansions, the only glaring 
discrepancy is in the value of the coefficient of VA for 
the Brueckner theory. In third order, even the difference 
between the Brueckner and ladder diagram results 
obtained from Table VI and the Monte Carlo calcula
tions agree. But this same difference in fourth order 
obtained from Table I I and the Monte Carlo calcula
tions are very different. 

This means that the ordinary calculations of the 
Brueckner theory, as outlined in this section, approx
imate each third-order diagram very well, but not each 
fourth-order diagram. In order to investigate which 

fourth-order diagram has not been adequately approx
imated, we have calculated the Brueckner theory, 
keeping only those terms in the single-particle energies 
which are linear in the potential V, thus omitting from 
the Brueckner theory the diagrams shown in Fig. 11. 

In practice, Eq. (5.12) was replaced by 

rsin2£c cos2kc~\ 

L(2kcy (2kcYJ 
(5.16) 

The results are shown in Table V. The series expansion 
of the Brueckner theory, minus the diagrams of Fig. 11, 
as obtained from Table V and the Monte Carlo calcula
tion agree, as do the differences [(Brueckner theory 
minus the diagrams of Fig. 11)—(ladder diagrams)] 
which establishes that one of the diagrams of Fig. 11 is 
the diagram not adequately approximated in the or
dinary calculations of the Brueckner theory. 

JR. 7 + 8 
FIG. 11. Diagrams not well approximated by the usual approx

imate treatment of off-energy shell propagation used in the 
Brueckner approximation. 
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TABLE VI. Series expansion for kFC = 1.0. 

Eb (ladder) = 10-3(39.5192207-7.3573749F2+1.5026353F3-0.31908594F4+0.06389859F5-0.015274886F6) 
Eh (Brueckner/=0.1) = 10-3(39.519220F-7.3573749F2+1.5820376F3-0.39131020F4+0.11601647F5-0.041403037F6) 
Eh (Brueckner/=1.0) = 10-3(39.5192207-7.3573749F2+1.5820376F3-0.36808576F4+0.09214862F5-0.024992145F6) 
Eb (Bmeckner/=3.0) = 10-3(39.519220F-7.3573749F2+1.5820376F3-0.35778685F4+0.08440648F5-0.021094986F6) 

Eh (first order)* = 10-3(39.5192207-7.3573749F2+1.5820468F3-0.35285134F4+0.08047672F5-0.018638974F6) 
Eb (ladder from Monte Carlo 

calculations) = 10-3(39.36174F-7.495F2+1.538F3-0.3347F4) 
Eb (Brueckner from Monte Carlo 

calculations) = 10-3(39.6174F-7.495F2+1.619F3-0.3363F4) 

* Means only first-order terms retained in the single-particle energies. 

The last result could have been anticipated. The 
introduction of the function F in Eq. (5.5) and the 
average momentum p in Eq. (5.6) are adequate 
approximations to the effects of the Pauli principle. 
The coefficient of V is not affected by any of the approx
imations mentioned at the beginning of this section, and 
indeed the "Monte Carlo" (actually the coefficient of 
V is known analytically in the "Monte Carlo" case) 
result and the results in Table VI for the coefficient V 
are essentially identical. The coefficient of V2 is affected 
by the approximations to the Pauli exclusion effect, but 
the Monte Carlo results and the results in Table VI are 
closely the same, so that it has to be expected that the 
approximations to the Pauli exclusion effects are 
adequate. The off-energy shell approximations do not 
enter into third order, or in the fourth-order diagrams 
other than those shown in Fig. 11. This last statement 
may be understood as follows. In third order, the only 
Brueckner diagrams are B3 and F3 [Fig. 2(a), (d)]. 
The energies of the other particles are not involved in 
the calculation of the correction to the single-particle 
energies. In fourth order, the Brueckner diagrams are, 
in addition to those shown in Fig. 11, 1.1, IV. 1, IV.2, 
and IV.3 (Figs. 3 and 8). Again, the energies of the 
other particles are not involved in the calculation of the 
corrections to the single-particle energies. But for the 
diagrams of Fig. 11, the energies of the other particles 
are involved in calculating a correction to the single-
particle energy of one of the particles; that is, the first 
of Fig. 11 is shown in Fig. 12. In calculating the cor
rection to the energy of Fig. 11, the energy denominator 
is 

E(l')+E(l")+E(2)-E(l'")-E(3)-E(4:), (5.17) 

where Eq. (5.8) specifies 

A = E(kF)-f[E(kF)- -^(0)]. (5.19) 

Equations (5.18) and (5.19) express an approximation 
to Eq. (5.17), but our results show that the approxima
tion is inadequate. 

I t is not likely that the difficulty is in the second of 
the diagrams of Fig. 11, because the actual denominator 
is (see Fig. 13) 

E(3f)+E(3")-E(3)-E(3m) 

because of the two time orders, and, since 131 < kF, 
Eq. (5.8) is correct subject only to the approximation 
that the E's are roughly quadratic: that is, there is no 
off-energy shell effect to approximate. 

There is also the point that the total momentum 
does not disappear from the denominator Eq. (5.18) 
whereas it does from Eq. (5.17). 

We have tried to adjust the value of / in Eq. (5.19) 
[or Eq. (5.8)] so that the results of the "as-practiced" 
calculations and the Monte Carlo calculations agree. 
We have found that no value of / [ 0 < / < <*>] suffices. 
In the "as-practiced" calculations, the contribution 
I I I . l is negative and greater in magnitude than I I I . 7 + 8 
for example, for kFc= 1.0. 

/ 
0.1 
1.0 
3.0 

00 

III . l 
-13.63 X10~5 

-11.31X10-5 

-10.28X10-5 

-9.79X10-5 

III.7+S 
9.79X10" 
9.79X10" 
9.79X10" 
9.79X10-

instead of 
E ( l / ) + £ ( l / / ) - A , (5.18) 

These results were obtained as follows: I I I . l was 
obtained by dropping the inhomogeneous term in 
Eq. (5.9) and replacing u by j in the right-hand side. 
Also in Eq. (5.8) the single-particle energies E(m) were 

FIG. 12. Middle 
time segment of dia
gram III . l . 

FIG. 13. Middle 
time segment of dia
gram III. 8. 
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set equal to m2/2. The modified equations were iterated 
twice. The first iteration gives B2, and the second 
B 2 + I I I . 1 + 0 ( F 6 ) . 

As / increases without limit, the magnitude of the 
contribution of I I I . l approaches the magnitude of the 
contribution of I I I . 7+8 . This fact may be seen from 
the table and can be proved analytically. From the 
Monte Carlo calculations where k^c— 1.0, we have 

III.l III.7+8 
-8.32X10-5 11.55X10-6. 

Therefore, although diagrams I I I . l and I I I . 7 + 8 are 
nominally included in Brueckner theory (the magni
tudes of I I I . l and I I I . 7 + 8 are roughly correct when 
they are considered separately), their sum has the 
wrong sign because of the treatment of off-energy 
shell propagation. 

Actually / = <*> gives the best possible estimate of 
their sum (namely zero). We found by direct calculation 
that the density at which the single-particle energy 
becomes flat and the self-consistent solution ceases to 

exist increases as / increases: 

/ = 0 . 1 &Fc=2,l 

/ = 3 . 0 kFc=2A. 

(To obtain these values the approximation Vu=X5 (r—c) 
was used. The actual values are somewhat less.) We 
conclude that it is possible that the self-consistent 
solution would continue to exist at high density were 
off-energy shell propagation treated properly. To settle 
this point, it would be necessary to solve the equations 
of Appendix A of Brueckner and Gammel13 in which 
off-energy propagation is treated exactly. 
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